Strong NP-completeness of a matrix similarity problem
نویسندگان
چکیده
منابع مشابه
Strong NP-Completeness of a Matrix Similarity Problem
Consider the following problem: given an upper triangular matrix A, with rational entries and distinct diagonal elements, and a tolerance 1, decide whether there exists a nonsingu-lar matrix G, with condition number bounded by , such that G ?1 AG is 22 block diagonal. This problem, which we shall refer to as DICHOTOMY, is an important one in the theory of invariant subspaces. It has recently be...
متن کاملOn Strong NP-Completeness of Rational Problems
The computational complexity of the partition, 0-1 subset sum, unbounded subset sum, 0-1 knapsack and unbounded knapsack problems and their multiple variants were studied in numerous papers in the past where all the weights and profits were assumed to be integers. We re-examine here the computational complexity of all these problems in the setting where the weights and profits are allowed to be...
متن کاملBi-Immunity Separates Strong NP-Completeness Notions
We prove that if for some ǫ > 0, NP contains a set that is DTIME(2n ǫ )-bi-immune, then NP contains a set that is 2-Turing complete for NP (hence 3-truth-table complete) but not 1-truth-table complete for NP. Thus this hypothesis implies a strong separation of completeness notions for NP. Lutz and Mayordomo [LM96] and Ambos-Spies and Bentzien [ASB00] previously obtained the same consequence usi...
متن کاملNP-completeness Proof: RBCDN Reduction Problem
Suppose {R1, . . . , Rk} is the set of all possible regions [?] of graph G. Consider a k-dimensional vector C whose i-th entry, C[i], indicates the number of connected components in which G decomposes when all nodes in Ri fails. Then, region-based component decomposition number (RBCDN) of graphG with region R is defined as αR(G) = max1≤i≤k C[i]. Suppose the RBCDN of G with region R is αR(G). If...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1996
ISSN: 0304-3975
DOI: 10.1016/0304-3975(96)00103-x